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On the Fröhlich-Spencer Estimate
in the Theory of Anderson Localization

Jürgen Pöschel

0 The Problem

The notion of Anderson localization refers to the appearance of pure point
spectrum with exponentially localized eigenstates within the spectrum of Schrödinger
operators, in particular random Schrödinger operators on integer lattices. These are
defined by Hamiltonians

H = −∆ + V

acting on the Hilbert space of square summable sequences on Zd with d ≥ 1, where
∆ denotes the finite difference Laplacian on Zd with

∆(x, y) =
{

1, |x − y| = 1

0, |x − y| �= 1,

and V denotes a random potential on Zd , for example with independent, identically
distributed random variables V (x) , x ∈ Zd .

Such Hamiltonians were introduced by Anderson [A] in the fifties to model the
motion of a single quantum-mechanical electron in a random medium such as a crystal
with impurities of random strength. Intuitively, sufficiently large disorder in the
crystal should trap the electron in a bounded region, thus eliminating extended states
and continuous spectrum and creating localized states and point spectrum instead.

In the one-dimensonal case, d = 1, this intuition was rigorously confirmed
in the seventies by Goldscheid, Pastur and Molchanov and others — see [FS] for
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references. Indeed, complete localization was found to happen even for arbitrarily
small disorder. The higher dimensional case, however, turned out to be more delicate.
Substantial progress was made only recently following a new and fundamental esti-
mate by Fröhlich and Spencer [FS] concerning the exponential decay properties of
the associated Green’s function for energy values close to the spectrum. As a result,
complete localization was established for sufficiently high disorder or sufficiently low
energy. See [DK] for a recent version and references.

The rational behind the Fröhlich-Spencer estimate is the following. Consider
the restriction HΛ of H to an arbitrary, usually finite, subset Λ of the lattice Zd with
Dirichlet boundary conditions outside Λ . Let

GΛ(E) = (HΛ − E)−1

denote its Green’s function, where E is either real valued and not in the spectrum
σ(HΛ) of HΛ or complex valued with a nonzero but possibly small imaginary part. If
E is sufficiently separated from the potential values within Λ , then the coefficients of
GΛ(E) decay exponentially fast — this is a standard result, recalled in the appendix.
Otherwise, various resonances between E and the potential values occur, but given
the randomness of the potential, stronger resonances are usually much rarer and more
sparse than milder ones. The idea is first to remove all those resonances from Λ

by decoupling them from the rest of Λ . Thus, in the beginning, Λ is replaced
by a suitable subset Λ0 , where again E is sufficiently separated from the potential
values. Then these resonance islands are recoupled one after the other with increasing
strength using the resolvent identity and the exponential decay of the Green’s function
established so far. This way, estimates are obtained iteratively for an increasing
sequence Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λ until all of Λ is retained.

The purpose of this note is to describe an approach to this procedure which
avoids many of the technicalities of the proofs given so far. Its new ingredient is
a family of exponentially weighted norms depending on distance functions which
automatically take into account the size and location of the resonant islands. Its main
result is the Coupling Lemma of the following section that quantitatively describes
the effect of recoupling resonant islands.

We are going to describe estimates that are valid for certain configurations of
the potential values and are thus purely deterministic. We leave out any questions
of how probable such configurations are for certain classes of random potentials, but
refer to [DK] and the references therein for these matters. Therefore we will not
specify any class of potentials V belongs to.
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1 The Coupling Lemma

We are going to estimate the Green’s function in terms of exponentially weighted
norms of the form

‖S‖m,Z = sup
x

∑
y

|S(x, y)| em distZ (x,y), m ≥ 0, Z ⊆ Zd

where distZ (x, y) denotes the distance between points x and y in Λ relative to some
zero distance set Z ⊆ Zd . This distance is defined as follows. Any link in Zd — that
is a nearest neighbor connection —is assigned zero length rather than the standard
unit length, if both of its endpoints belong to Z . The Z -distance between two lattice
points is then the length of their shortest connecting path, where path length is defined
as usual as the total length of all its links.

These norms are multiplicative: ‖ST ‖m,Z ≤ ‖S‖m,Z‖T ‖m,Z . They are also
monotone: ‖S‖m,Z ≤ ‖S‖n,Z for m ≤ n and ‖S‖m,Z ≤ ‖S‖m,Y for Z ⊇ Y . In case
of an empty set Z we have

dist∅(x, y) = dist(x, y) = |x − y| =
d∑

i=1

|xi − yi | ,

the �1 -distance between x and y in the lattice, and ‖S‖m,∅ = ‖S‖m reduces to an
ordinary exponentially weighted norm.

The Coupling Lemma describes the effect of coupling a region A of more
resonant potential values into a region B on which the Green’s function is already
known to show some exponential decay. These two regions are required to overlap
in a sufficiently large ‘collar’ so that the exponential decay of G B across this ‘collar’
overpowers the blow up due to GA . The geometric set up of this lemma was inspired
by [DK].

Let

Km = ‖∆‖m = 2d em .

Throughout the rest of this note all estimates refer to one and the same energy level E ,
which is therefore omitted from the notation for simplicity.

The Coupling Lemma. Let Λ = A ∪ B , and let Y ⊆ A, Z ⊆ B be their
respective zero distance sets. Assume that

‖GA‖m,Y ≤ MA,
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and that around each point x ∈ Λ\A there is a neighbourhood V ⊆ B such that

‖GV ‖m,Z ≤ MB, distZ (x, Λ\V ) ≥ r

with fixed positive numbers m , r and MA, MB ≥ K −1
m . If there is 0 ≤ µ ≤ m such

that

θ = K 2
m MA MBe−µr < 1,

then

‖GΛ‖m−µ,Z∪Y ≤ 2

1 − θ
Km MA MB .

Proof. For any subset V ⊆ Λ we have HΛ = HV,Λ\V + ΓV , where HV,Λ\V

denotes the direct sum of the uncoupled Hamiltonians HV and HΛ\V , and ΓV =
∆Λ − ∆V − ∆Λ\V represents their coupling across the boundary of V . It follows
from the resolvent identity that

GΛ = GV,Λ\V + GV,Λ\V ΓV GΛ,

where GV,Λ\V denotes the direct sum of GV and GΛ\V .
Let Sx denote the x -th row of a linear operator S , with

‖Sx‖m,Z =
∑

y

|S(x, y)| em distZ (x,y),

so that ‖S‖m,Z = supx ‖Sx‖m,Z . For x ∈ Λ\A choose a neighbourhood V of x
as stipulated in the lemma and apply the resolvent identity to obtain Gx

Λ = Gx
V +

Gx
V ΓV GΛ . Then, for 0 ≤ n ≤ m ,

‖Gx
Λ‖n,Z∪Y ≤ ‖GV ‖m,Z + ‖Gx

V ΓV ‖n,Z‖GΛ‖n,Z∪Y .

For x ∈ A choose A as a neighbourhood to obtain Gx
Λ = Gx

A + Gx
AΓAGΛ . The

product Gx
AΓAGΛ does not involve any elements from rows Gu

Λ with u ∈ A . By the
previous estimate and the hypotheses we thus have, for x ∈ A ,

‖Gx
Λ‖n,Z∪Y ≤ ‖GA‖m,Y + ‖GA‖m,Y ‖ΓA‖m sup

u /∈A
‖Gu

Λ‖n,Z∪Y

≤ MA + Km MA MB

+ Km MA sup
u /∈A

‖Gu
V ΓV ‖n,Z‖GΛ‖n,Z∪Y ,



Section 2: The Fröhlich-Spencer Estimate 5

where V = V (u) denote the neighbourhood s assigned above to points u not in A .
Since Km MA ≥ 1 by assumption, the latter estimate comprises the former. Taking
the supremum over all x ∈ Λ and using Km MB ≥ 1 we thus obtain

‖GΛ‖n,Z∪Y ≤ 2Km MA MB + Km MA sup
u /∈A

‖Gu
V ΓV ‖n,Z‖GΛ‖n,Z∪Y .

Now observe that for each such V ,

‖Gu
V ΓV ‖n,Z ≤ ‖ΓV ‖n‖GV ‖m,Z e−(m−n)(distZ (u,Λ\V )−1)

≤ Kn MBe−(m−n)(r−1)

= Km MBe−(m−n)r .

Choosing n = m − µ and appealing to the hypotheses of the lemma we obtain

‖GΛ‖m−µ,Z∪Y ≤ 2Km MA MB + θ‖GΛ‖m−µ,Z∪Y ,

and the result follows.

2 The Fröhlich-Spencer Estimate

Given a potential V and a real or complex energy level E , let

S = {
x ∈ Zd : |V (x) − E | ≤ N

}

with a sufficiently large N to be characterized below in terms of the parameter m .
The set S comprises the lattice sites where resonances with the energy level E might
occur.

We assume that there is a decomposition

S =
⋃
i≥1

Ci

of S into mutually disjoint subsets Ci together with a family of mutually disjoint
covering sets Di ⊇ Ci for i ≥ 1. Each of these covering sets is assumed to consist
of a family of connected components Dα

i with ‘cores’ Cα
i = Dα

i ∩ S such that

dist
(
Zd\Dα

i , Cα
i

) ≥ ri , (1)

dist
(
σ
(

HDα
i

)
, E

)
≥ 1/Φ(ri ), (2)

card Dα
i ≤ Φ(ri ). (3)
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The right hand sides of these inequalities are required to satisfy

∑
i≥1

r−1
i log Φ(ri ) < ∞, (4)

and we also assume that

ri+1 ≥ 4ri ≥ 4, i ≥ 1 (5)

for convenience. Roughly speaking, the stronger the spectral resonance on Dα
i and

the bigger this component, measured in terms of �(ri ) , the bigger the ‘overlap’ ri

of Dα
i with the complement of S is required to be.
Incidentally, condition (4) is another instance of the Brjuno condition for small

divisors originally arising in Siegel’s problem of linearizing a complex analytic map
in the plane around a neutral fixed point [B,R].

The definition of S implies that for every subset Λ of Zd disjoint from S ,

‖GΛ‖m ≤ 1, m = log
N − 1

2d
. (6)

Moreover, (2) and (3) imply that for all i ≥ 1,

‖G Di ‖0 = sup
α

‖G Dα
i
‖0 ≤ Ψ (ri ) = Φ2(ri ). (7)

The proofs are simple and given in the appendix. In the following we use (6) as a
characterization of S , and (7) instead of (2) and (3).

A subset Λ ⊆ Zd is called admissible, if

Cα
i ∩ Λ �= ∅ ⇒ Dα

i ⊆ Λ

for every Cα
i . Its order is k = max{ i : Λ ∩ Ci �= ∅ } , which is understood to be 0 if

Λ ∩ S = ∅ .
The configurations considered here are more flexible than those in [FS]. The

sets Ci need not be maximal in any sense. Moreover, no assumption has to be made
about the distance between different components of Di . Those come into play at a
later stage only. Finally, an admissible set Λ is allowed to intersect some component
Dα

i without containing it as long as it does not intersect with its ‘core’ Cα
i .

For k ≥ 1 set

Zk =
⋃

1≤i≤k

Di , mk = m −
∑

1≤i≤k

µi ,
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with

µk = k + 1

rk
log Km+1 + 1

rk

∑
1≤i≤k

log Ψ (ri ).

Moreover, let Z0 = ∅ and m0 = m , and let r = r1 .

Theorem (Fröhlich-Spencer). Assume that (1) and (4-7) hold, and that

m ≥ m∗ = a

r − 4

(
1 + log 2d + r

2

∑
i≥1

r−1
i log Ψ (ri )

)
, a = 28

9
.

If Λ is admissible of finite order k , then

‖GΛ‖mk ,Zk
≤ K k

m+1

∏
1≤i≤k

Ψ (ri ),

where mk > (m − m∗)(r − a)/r ≥ 0 for all k ≥ 0 .

Proof. By (5) we have

∑
k≥1

k + 1

rk
≤ 1

r

∑
k≥1

k + 1

4k−1
= a

r
, a = 28

9
.

Moreover, log Km+1 = m + 1 + log 2d . Consequently, again using (5),

∑
k≥1

µk =
∑
k≥1

k + 1

rk
log Km+1 +

∑
k≥1

∑
1≤i≤k

r−1
k log Ψ (ri )

≤ a

r
m + a

r
(1 + log 2d) + a

2

∑
i≥1

r−1
i log Ψ (ri )

= a

r
m + r − a

r
m ≤ m.

It follows that mk > (m − m∗)(r − a)/r for all k .
The estimate of GΛ obviously holds for admissible sets of order 0. So assume

it proven for such sets of order up to k ≥ 0, and let Λ be admissible of order k + 1.
Let C = Λ ∩ Ck+1 and B = Λ\C . Then B is admissible of order k , so

‖G B‖mk ,Zk
can be bounded as stated in the theorem. Let D be the smallest cover of

C consisting of connected components of Dk+1 . By (7),

‖G D‖mk ,D ≤ ‖G Dk+1‖0 ≤ Ψ (rk+1).
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Since Λ is admissible, we have D ⊆ Λ and so Λ = B ∪ D . Moreover,

distZk (Λ\D, C) ≥ dist∅(Λ\D, C) ≥ rk+1,

because the shortest path representing the Zk -distance between Λ\D and C must lie
entirely within one component of D except for one endpoint, which by assumption
is disjoint from Zk . Whence this distance is just the ordinary distance.

We can now apply the Coupling Lemma to Λ = B ∪ D , with B as a neigh-
bourhood for every point not in D , since

θ = K 2
m ‖G D‖mk ,D‖G B‖mk ,Zk

e−µk+1rk+1

≤ e−2 K k+2
m+1

k+1∏
i=1

Ψ (ri ) e−µk+1rk+1

≤ e−2

by the very definition of µk+1 . Moreover, mk+1 = mk − µk+1 > 0. Consequently,

‖GΛ‖mk+1,Zk+1
≤ ‖GΛ‖mk−µk+1,Zk∪D

≤ Km+1‖G D‖mk ,D‖G B‖mk ,Zk

≤ K k+1
m+1

∏
1≤i≤k+1

Ψ (ri ),

as required.

As an illustration suppose (7) holds with Ψ (r) = e
√

r/2 as in [FS]. Then

∑
i≥1

r−1
i log Ψ (ri ) = 1

2

∑
i≥1

1√
ri

≤ 1√
r

∑
i≥1

2−i = 1√
r

by (5). It suffices to assume r ≥ 10 and m ≥ mo = 2+log 2d for simplicity to obtain

‖GΛ‖n,Zk
≤ K k

m+1e
√

rk

for admissible sets Λ of order k with n = 2(m − mo)/3. From this one recovers
exponentially small estimates for the components of GΛ with x and y sufficiently
far apart provided the reduced distance distZk (x, y) is comparable to the standard
distance |x − y| . For instance, assume that

2 distZk (x, y) ≥ |x − y| − dk
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for all x , y in Zd and all k ≥ 1 with dk = supα diam Dα
k . Assuming also that

m ≥ 3mo we obtain

|GΛ(x, y)| ≤ e−n|x−y|/4 for |x − y| ≥ 4dk,

since with these assumptions,

n distZk (x, y) ≥ n

2
(|x − y| − dk)

≥ n

4
|x − y| + n

2
dk

≥ n

4
|x − y| + m − mo

3
rk

on one hand and

log
(

K k
m+1e

√
rk

)
= (m + 1 + log 2d) k + √

rk ≤
(m

9
+ mo

3

)
rk

on the other hand.
The last lemma describes a simple criterion to ensure that the reduced distance

is comparable to the standard distance.

Lemma. Suppose that for all k and all components Dα
k ,

dist(Dα
k , Zk\Dα

k ) ≥ diam Dα
k ,

where diam Dα
k is the diameter of Dα

k measured with respect to paths lying entirely
within Dα

k . Then

|x − y| ≤ 2 distZk (x, y) + dk

for all x and y in Zd and all k ≥ 1 with dk = supα diam Dα
k .

Proof. Fix k ≥ 1. To simplify notation we drop the subscript k and write Z
for Zk and so on.

Consider the most disadvantagous case where both x and y lie in Z . There is
a shortest path γ between x and y with respect to the reduced distance. This path
has a decomposition

γ = ν0 ∪ µ1 ∪ ν1 ∪ · · · ∪ µn ∪ νn,

where each νi lies entirely in Z , whereas each µi lies in Λ\Z except for its endpoints.
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Thus, |νi |Z = 0 for 0 ≤ i ≤ n and |µi |Z = |µi | for 1 ≤ i ≤ n , and

|γ |Z =
∑

1≤i≤n

|µi | = distZ (x, y).

If necessary, we may also replace each νi by another path in the same component
Dα and with the same endpoints so that |νi | ≤ diam Dα . Here, |γ |Z and |γ | denote
the length of a path γ with respect to the Z -distance and �1 -distance respectively.

For ν0 we clearly have |ν0| ≤ d . If n ≥ 1, then µi must be connecting two
different components of Z , since otherwise γ were not minimal. It follows that |µi |
is greater or equal than the diameter of the component of Z to which µi is leading to,
whence |µi | ≥ |νi | for 1 ≤ i ≤ n by the above choice of the νi and the hypotheses.
Consequently,

|x − y| ≤ |ν0| +
∑

1≤i≤n

(|µi | + |νi |)

≤ d + 2
∑

1≤i≤n

|µi |

= d + 2 distZ (x, y).

Appendix

To prove (5) write formally

GΛ = (V − E − ∆Λ)−1 =
∑
k≥0

(
(V − E)−1∆Λ

)k
(V − E)−1,

where the diagonal operator V −E is understood to be restricted to Λ . For Λ disjoint
from S ,

‖(V − E)−1‖m ≤ max
x∈Λ

|V (x) − E |−1 ≤ 1

N
, m ≥ 0,

while ‖∆Λ‖m ≤ 2d em for any Λ . It follows that for m < log(N/2d) the formal
series converges to GΛ , and that

‖GΛ‖m ≤ 1

N − 2d em
.

For m = log((N − 1)/2d) the required estimate follows.
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To prove (7) let D be any finite subset of Zd and suppose that

dist(σ (HD), E) ≥ Φ−1 > 0.

Since HD is hermitian, there exists a unitary transformation U such that U ∗ HDU =
H̄D is diagonal. Consequently, ‖H̄−1

D ‖0 ≤ Φ . By the Schwarz inequality, we have
‖U‖0, ‖U ∗‖0 ≤ √

M , where M is the cardinality of D . Thus,

‖G D‖0 ≤ ‖U ∗‖0‖H̄−1
D ‖0‖U‖0 ≤ MΦ,

as we wanted to show.
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