manuscripta math. 70 (1990) 27-37

On the Froéhlich-Spencer Estimate
in the Theory of Anderson L ocalization

JURGEN POSCHEL

0 TheProblem

The notion of Anderson localization refers to the appearance of pure point
spectrum with exponentially localized eigenstates within the spectrum of Schrodinger
operators, in particular random Schrodinger operators on integer lattices. These are
defined by Hamiltonians

H=—-A+V

acting on the Hilbert space of square summable sequenceson Z9 with d > 1, where
A denotes the finite difference Laplacian on Z9 with

1, x-yl=1

A =
) {o, Xyl £1,

and V denotes arandom potential on Z9, for example with independent, identically
distributed random variables V (x), x € Z¢9.

Such Hamiltonians were introduced by Anderson [A] in thefiftiesto model the
motion of asingle quantum-mechanical electroninarandom medium suchasacrysta
with impurities of random strength. Intuitively, sufficiently large disorder in the
crystal should trap the electron in abounded region, thus eliminating extended states
and continuous spectrum and creating localized states and point spectrum instead.

In the one-dimensonal case, d = 1, this intuition was rigorously confirmed
in the seventies by Goldscheid, Pastur and Molchanov and others — see [FS] for
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references. Indeed, complete localization was found to happen even for arbitrarily
small disorder. The higher dimensional case, however, turned out to be more delicate.
Substantial progress was made only recently following a new and fundamental esti-
mate by Frohlich and Spencer [FS] concerning the exponential decay properties of
the associated Green's function for energy values close to the spectrum. Asaresult,
complete localization was established for sufficiently high disorder or sufficiently low
energy. See [DK] for arecent version and references.

The rational behind the Frohlich-Spencer estimate is the following. Consider
therestriction H, of H to an arbitrary, usually finite, subset A of thelattice Z9 with
Dirichlet boundary conditions outside A . Let

Gu(E)=(H,—E)!

denote its Green’s function, where E is either real valued and not in the spectrum
o (H,) of H, or complex valued with anonzero but possibly small imaginary part. If
E issufficiently separated from the potential valueswithin A, then the coefficients of
G, (E) decay exponentially fast — thisis a standard result, recalled in the appendix.
Otherwise, various resonances between E and the potential values occur, but given
the randomness of the potential, stronger resonances are usually much rarer and more
sparse than milder ones. The idea is first to remove all those resonances from A
by decoupling them from the rest of A. Thus, in the beginning, A is replaced
by a suitable subset A, where again E is sufficiently separated from the potential
values. Thentheseresonanceislandsarerecoupled oneafter theother withincreasing
strength using the resolvent identity and the exponential decay of the Green’sfunction
established so far. This way, estimates are obtained iteratively for an increasing
sequence Ag C A1 C --- C A until al of A isretained.

The purpose of this note is to describe an approach to this procedure which
avoids many of the technicalities of the proofs given so far. Its new ingredient is
a family of exponentialy weighted norms depending on distance functions which
automatically take into account the size and location of the resonant islands. Its main
result is the Coupling Lemma of the following section that quantitatively describes
the effect of recoupling resonant islands.

We are going to describe estimates that are valid for certain configurations of
the potential values and are thus purely deterministic. We leave out any questions
of how probable such configurations are for certain classes of random potentials, but
refer to [DK] and the references therein for these matters. Therefore we will not
specify any class of potentials V belongsto.
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1 The Coupling Lemma

Wearegoingto estimatethe Green’sfunctionintermsof exponentially weighted
norms of the form

I1Slimz = sup D " IS(x, y)| enIzxy), m=>0 ZcZzd
X
y

where distz (X, y) denotesthe distance between points x and y in A relativeto some
zerodistanceset Z < Z9. Thisdistanceisdefined asfollows. Any linkin Z9 — that
is a nearest neighbor connection —is assigned zero length rather than the standard
unit length, if both of itsendpointsbelongto Z. The Z -distance between two lattice
pointsisthen thelength of their shortest connecting path, where path length is defined
as usual asthe total length of al itslinks.

These norms are multiplicative: [|ST |z < ISIim zlITllmz. They are also

monotone: [|S|lm.z < lISllh.z for m <nand ||S]nz < ISllny for Z2 Y. Incase
of an empty set Z we have

d
disty(x, y) = dist(x, y) = Ix =yl = Y 1% — ¥il,

i=1

the ¢, -distance between x and y in the lattice, and || S|l 4 = || S|l reduces to an
ordinary exponentially weighted norm.

The Coupling Lemma describes the effect of coupling a region A of more
resonant potential values into aregion B on which the Green’s function is already
known to show some exponential decay. These two regions are required to overlap
inasufficiently large ‘ collar’ so that the exponential decay of Gg acrossthis‘collar’
overpowersthe blow up dueto Ga. The geometric set up of thislemmawasinspired
by [DK].

Let

Km = [|Alln = 2d €.

Throughout therest of thisnoteall estimatesrefer to one and the same energy level E,
which is therefore omitted from the notation for simplicity.

The CouplingLemma. Let A = AUB,andlet Y C A, Z C B bether
respective zero distance sets. Assume that

IGAllmy = Ma,
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and that around each point x € A\ A thereisa neighbourhood V C B such that

IGvlimz < Ms, distz(x, A\V) >r

with fixed positive numbers m, r and Ma, Mg > anl. If thereis 0 < u < m such
that

0 = KiMaMpe™ < 1,
then

||GA||m—M,ZuY = l— KmMAMB.

Proof. For any subset V € A wehave Hy = Hy a\v + I'y, Where Hy a\v
denotes the direct sum of the uncoupled Hamiltonians Hy and H,\v, and Iy =

Ap — Ay — Ay represents their coupling across the boundary of V. It follows
from the resolvent identity that

Ga =Gy, a\wv + Gy, avIVGy,

where Gy, 4\v denotesthedirect sumof Gy and Gy\v .

Let S* denote the x-th row of alinear operator S, with

dist
1S0Imz = Y IS(X, y)| @ diszy),
y

so that || S|y, z = supy |S*llm,z. For x € A\ A choose a neighbourhood V of x
as stipulated in the lemma and apply the resolvent identity to obtain G} = G{ +
GYIvG,. Then,for 0<n<m,

IGAInzoy < IGVIimz + IGY IV In.z1GAlln, zuy-

For x € A choose A as a neighbourhood to obtain G} = G + GAxI'aAGa. The

product GAI'aG, does not involve any elements from rows G with u € A. By the
previous estimate and the hypotheses we thus have, for x € A,

IGlIn.zuy < IIGAllmy + IGAllmy I Tallm SUP 1G5 lln, zuy

UgA
< Ma+ KnMaMg

+ KmMasup |GV I lln.z1Ga lln. zuy -
U¢A
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where V = V (u) denote the neighbourhood s assigned above to points u not in A.
Since KnMa > 1 by assumption, the latter estimate comprises the former. Taking
the supremum over al x € A andusing K,Mg > 1 we thus obtain

1GAlln,zoy < 2KmMaMg + KmMASl;g IGY TV In.z1GAlln.zuy-
u

Now observe that for each such V,

—(m—n)(dist A\V)—-1
IGY Ty llnz < 1TV IInlIGy |l 2 € MM @Stz AWV)-D)

< K,M Be—(m—n)(r -1

= KpMge™™"r,
Choosing n = m — u and appealing to the hypotheses of the lemmawe obtain

1GAllm—p. zoy < 2KmMaMp + 0[G4 llm—p.. zuy>

and the result follows. 1

2 The Frohlich-Spencer Estimate

Given apotential V and areal or complex energy level E, let
S={xez?: [V(x)—E| <N}

with a sufficiently large N to be characterized below in terms of the parameter m.
Theset S comprisesthelattice siteswhere resonances with the energy level E might
occur.

We assume that there is a decomposition

s=J¢

of S into mutualy digoint subsets C; together with a family of mutually digoint
covering sets D; © C; for i > 1. Each of these covering sets is assumed to consist
of afamily of connected components Df* with ‘cores’ C* = D{* N S such that

dist (Z?\D¢, C¥) > 1y, (1)

dist <0(HDia), E) > 1/d(r), )
card Dj" < @(ry). 3
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The right hand sides of these inequalities are required to satisfy

> ritlog d(ri) < oo, (4)
i>1
and we also assume that
iyl > 4r > 4, I >1 (5)

for convenience. Roughly speaking, the stronger the spectral resonance on D and
the bigger this component, measured in terms of ®(r;), the bigger the ‘overlap’ r;
of D with the complement of S isrequired to be.

Incidentally, condition (4) is another instance of the Brjuno condition for small
divisorsoriginally arising in Siegel’s problem of linearizing a complex analytic map
in the plane around a neutral fixed point [B,R].

The definition of S impliesthat for every subset A of Z9 disoint from S,

N-1
1Gallm = 1, m = log od (6)
Moreover, (2) and (3) imply that for al i > 1,
IGo,llo = suplIGpx llo < ¥ (ri) = @*(ry). (7)

The proofs are simple and given in the appendix. In the following we use (6) as a
characterization of S, and (7) instead of (2) and (3).
A subset A € 79 iscalled admissible, if

CiNnA#0P = DfcA

for every C. Itsorder isk = max{i : A NC; # @}, which isunderstood to be O if
ANS=4.

The configurations considered here are more flexible than those in [FS]. The
sets C; need not be maximal in any sense. Moreover, no assumption has to be made
about the distance between different components of D;. Those come into play at a
later stage only. Finally, an admissible set A isallowed to intersect some component
D without containing it as long as it does not intersect with its ‘core’” C*.

For k > 1 set

Zy = UDi, mk:m_Z,Uvi,
1<i<k 1<i<k
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with
k+1

1
logKm1+ = ) logw (ry).
k Mk 1<i<k

Ik =

Moreover, let Zg=0¥ and mg=m,andletr =r;.

Theorem (Frohlich-Spencer). Assumethat (1) and (4-7) hold, and that

a r .
mzm*:rjl(l+|092d+§;ri IogtI/(ri)>, a="g.

If A isadmissible of finite order k, then

1GAIm.z < Kieya [T w0,

1<i<k

where my > (m—m,)(r —a)/r > 0 for all k > 0.

Proof. By (5) we have

Zk+1<}2k+1:§, LB

= k—1
= T« et 4 r 9

Moreover, log Ky 1 = m+ 1+ log2d. Consequently, again using (5),

k+1

D =)~ —logKmii+ ) D ritlogw ()

k>1 k>1 k k>1 1<i<k

a a a -1
oM+ —(L+log2d) + 5 > Tr g ¥ (ry)

i>1

[A

a r—a
=-M+—MmMm=<m.
r r

It followsthat my > (m—m,)(r —a)/r foral k.

The estimate of G, obviously holds for admissible sets of order 0. So assume
it proven for such setsof order upto k > 0, and let A be admissible of order k + 1.

Let C = ANCy1 and B = A\C. Then B is admissible of order k, so
IGgllm,.z Ccanbebounded as stated in the theorem. Let D be the smallest cover of
C consisting of connected components of Dy1. By (7),

IGDlIm.p = IGDy.llo = W (Fks2).
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Since A isadmissible, wehave D € A andso A = B U D. Moreover,
distz, (A\D, C) > dists(A\D, C) > ry;1,

because the shortest path representing the Zy -distance between A\D and C must lie
entirely within one component of D except for one endpoint, which by assumption
isdigoint from Z,. Whence this distance isjust the ordinary distance.

We can now apply the Coupling Lemmato A = B U D, with B asaneigh-
bourhood for every point not in D, since

2 — r
0 = K IGp im0 IGBlIm,,z,&
k+1
< e_sz+1l_[ (I/(r )e Mk4+1Tk+1
i=1

< g2

by the very definition of k. 1. Moreover, mg, 1 = Mg — k1 > 0. Consequently,

” GA “ M1, Zk+1 =< ” GA ” Mg — k41, ZkID

A

Kmt1lGp im0 l1GBIlm,. z,

Kt [T woo,
1<i<k+1

IA

asrequired. 1
As an illustration suppose (7) holdswith ¥ (r) = e¥"/2 asin [FS]. Then

1| _|_7
;r og¥ (ri) = le [;

by (5). It sufficestoassumer > 10 and m > m, = 2+4log2d for simplicity to obtain
”GAHn,Zk =< KrliH_]_e\/E

for admissible sets A of order k with n = 2(m — my)/3. From this one recovers
exponentially small estimates for the components of G, with x and y sufficiently
far apart provided the reduced distance distz, (X, y) is comparable to the standard
distance |x — y|. For instance, assume that
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for al x, y in Z9 and al k > 1 with dy = sup, diam D¢. Assuming also that
m > 3m, we obtain

1GA(X, Y)| < €™V for  |x — y| > 4dk,
since with these assumptions,
: n
ndistz, (X, y) > S (IX=yl- d)
SRLY VL
Z 2 y 5 %

>n|x | +
Z y

m—mg
3

Mk
on one hand and

m m
Iog(Kr'qurleJW) = (M+1+log2d) Kk + /T < (5 + ?O) i

on the other hand.
The last lemma describes a simpl e criterion to ensure that the reduced distance
Is comparable to the standard distance.

Lemma. Supposethat for all k and all components D,
dist(Dg, Z\Dg) > diam Dy,

where diam Dy isthe diameter of DY measured with respect to paths lying entirely
within Dy . Then

for all x and y in Z9 and all k > 1 with dy = sup, diam D¢

Proof. Fix k > 1. To simplify notation we drop the subscript k and write Z
for Z, and so on.

Consider the most disadvantagous case where both x and y liein Z. Thereis
a shortest path y between x and y with respect to the reduced distance. This path
has a decomposition

y =voUpurUviU---UpunUuwp,

whereeach v; liesentirelyin Z, whereaseach i liesin A\ Z except for itsendpoints.
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Thus, |vi|z; =0for 0<i <nand |ui|l; = |uil for L <i <n,and

ylz = ) lwil = distz(x, y).

1<i<n

If necessary, we may also replace each v; by another path in the same component
D¢ and with the same endpoints so that |v;| < diam D*. Here, |y|; and |y| denote
the length of apath y with respect to the Z -distance and ¢, -distance respectively.
For vo we clearly have |vg| < d. If n > 1, then xj must be connecting two
different componentsof Z, since otherwise y werenot minimal. It followsthat ||
isgreater or equal than the diameter of the component of Z towhich w; isleading to,
whence |ui| > |vi| for 1 <i < n by the above choice of the v; and the hypotheses.

Consequently,

X =yl <Ivol+ Y (il +uil)

1<i<n

<d+2 ) |uil

1<i<n

=d+ 2distz(x,y). 1

Appendix
To prove (5) write formally

Gi=(V-E-Ant= Y ((V-Ba,) v -B™
k>0

wherethediagonal operator V — E isunderstood to berestrictedto A. For A digoint
from S,

m > 0,

1
IV —-E)Ym<max|Vx)—E|™t < =,
XeA N

while [[All, < 2d €™ for any A. It follows that for m < log(N/2d) the formal
series convergesto G, , and that

G < —\
1Galln < g

For m = log((N — 1)/2d) the required estimate follows.
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To prove (7) let D be any finite subset of Z¢ and suppose that
dist(oc (Hp), E) > @~ > 0.

Since Hp ishermitian, there existsaunitary transformation U such that U*HpU =
Hp isdiagonal. Consequently, |[Hplllo < @ . By the Schwarz inequality, we have
U llo» IU*]lo < v/M, where M isthe cardinality of D. Thus,

IGbllo < IU*lolHp llollU llo < M,

as we wanted to show.
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